Description:

This fallacy occurs when someone uncritically rejects a prediction or the effectiveness of the responses to it when the predicted outcome does not occur:

Premise 1: Prediction P predicted outcome X if response R is not taken.

Premise 2: Response R was taken (based on prediction P).

Premise 3: X did not happen, so Prediction P was wrong.

Conclusion: Response R should not have been taken (or there is no longer a need to take Response R).

 

The error occurs because of a failure to consider the obvious: if there is an effective response to a predicted outcome, then the prediction will appear to be “wrong” because the predicted outcome will not occur.

While a prediction that turns out to be “wrong” is technically wrong, the error here is to uncritically conclude that this proves the response was not needed (or there is no longer any need to keep responding). The initial prediction assumes there will not be a response and is usually made to argue for responding. If the response is effective, then the predicted outcome will not occur, which is the point of responding. To reason that the “failure” of the prediction shows that the response was mistaken or no longer needed is thus a mistake in reasoning.

To use a silly analogy, imagine that we are in a car and driving towards a cliff. You make the prediction that if we keep going, we will go off the cliff and die. So, I turn the wheel and avoid the cliff. If backseat Billy gets angry and says that there was no reason to turn the wheel or that I should turn it back because we did not die in a fiery explosion, Billy is falling for this fallacy. After all, if we did not turn, then we would have probably died. And if we turn back too soon, then we will probably die. The point of turning is so that the predicted outcome of death will not occur.

A variation on this fallacy involves inferring the prediction was bad because it turned out to be “wrong”:

Premise 1: Prediction P predicted outcome X if response R is not taken.

Premise 2: Response R was taken based on prediction P.

Premise 3: X did not happen.

Conclusion: Prediction P was wrong about X occurring if response R was not taken.

 

While the prediction would be “wrong” in that the predicted outcome did not occur, this does not disprove the prediction that X would occur without the response. Going back to the car example, the prediction that we would die if we drove of the cliff if we do not turn is not disproven if we turn and then do not die. In fact, that is the result we want.

Since it lacks logical force, this fallacy gains its power from psychological force. Sorting out why something did not happen can be difficult and it is easier to go along with biases, preconceptions, and ideology than it is to sort out a complicated matter.

This fallacy can be committed in good faith out of ignorance. When committed in bad faith, the person using it is aware of the fallacy. The intent is often to use this fallacy to argue against continuing the response or as a bad faith attack on those who implemented or argued for the response. For example, someone might argue in bad faith that a tax cut was not needed to avoid a recession because the predicted recession did not occur after the tax cut. While the tax cut might have not been a factor, simply asserting that they were not needed because the recession did not occur would commit this fallacy.

 

Defense: To avoid inflicting this fallacy on yourself or falling for it, the main defense is to keep in mind that a prediction based on the assumption that a response will not be taken can turn out to be “wrong” if that response is taken. Also, you should remember that the failure of a predicted event to occur after a response is made to prevent it would count as some evidence that the response was effective rather than as proof it was not needed. But care should be taken to avoid uncritically inferring that the response was needed or effective because the predicted event did not occur.

 

Example #1

Julie: “The doctor said that my blood pressure would keep going up unless I improved my diet and started exercising.”

Kendra: “How is your blood pressure now?”

Julie: “Pretty good. I guess I don’t need to keep eating all those vegetables and I can stop going on those walks.”

Kendra: “Why?”

Julie: “Well, she was wrong. My blood pressure did not go up.”

Example #2

Robert: “While minority voters might have needed some protection long ago, I am confident we can remove all those outdated safeguards.”

Kelly: “Why? Aren’t they still needed? Aren’t they what is keeping some states from returning to the days of Jim Crow?”

Robert: “Certainly not. People predicted that would happen, but it didn’t. So, we obviously no longer need those protections in place.”

Kelly: “But, again, aren’t these protections what is keeping that from happening?”

Robert: “Nonsense. Everything will be fine.”

Example #3

Lulu: “I am so mad. We did all this quarantining, masking, shutting down, social distance and other dumb thing for so long and it is obvious we did not need to.”

Paula: “I didn’t like any of that either, but the health professionals say it saved a lot of lives.”

Lulu: “Yeah, those health professionals said that millions of people would die if we didn’t do all that stupid stuff. But look, we didn’t have millions die. So, all that was just a waste.”

Paula: “Maybe doing all that was why more people didn’t die.”

Lulu: “That is what they want you to think.”

 

Since I often reference various fallacies in blog posts I decided to also post the fallacies. These are from my book 110 Fallacies.

Description:

This fallacy is committed when a person places unwarranted confidence in drawing a conclusion from statistics that are unknown.

 

Premise 1: “Unknown” statistical data D is presented.

Conclusion: Claim C is drawn from D with greater confidence than D warrants.

 

Unknown statistical data is just that, statistical data that is unknown. This data is different from “data” that is simply made up because it has at least some foundation.

One type of unknown statistical data is when educated guesses are made based on limited available data. For example, when experts estimate the number of people who use illegal drugs, they are making an educated guess. As another example, when the number of total deaths in any war is reported, it is (at best) an educated guess because no one knows for sure exactly how many people have been killed.

Another common type of unknown statistical data is when it can only be gathered in ways that are likely to result in incomplete or inaccurate data. For example, statistical data about the number of people who have affairs is likely to be in this category. This is because people generally try to conceal their affairs.

Obviously, unknown statistical data is not good data.  But drawing an inference from unknown data need not always be unreasonable or fallacious. This is because the error in the fallacy is being more confident in the conclusion than the unknown data warrants. If the confidence in the conclusion is proportional to the support provided by the evdience, then no fallacy would be committed.

For example, while the exact number of people killed during the war in Afghanistan will remain unknown, it is reasonable to infer from the known data that many people have died. As another example, while the exact number of people who do not pay their taxes is unknown, it is reasonable to infer that the government is losing some revenue because of this.

The error that makes this a fallacy is to place too much confidence in a conclusion drawn from unknown data. Or to be a bit more technical, to overestimate the strength of the argument based on statistical data that is not adequately known.

This is an error of reasoning because, obviously enough, a conclusion is being drawn that is not adequately justified by the premises. This fallacy can be committed in ignorance or intentionally committed.

Naturally, the way in which the statistical data is gathered also needs to be assessed to determine whether other errors have occurred, but that is another matter.

 

Defense: The main defense against this fallacy is to keep in mind that inferences drawn from unknown statistics need to be proportional to the quality of the evidence. The error, as noted above, is placing too much confidence in unknown statistics.

Sorting out exactly how much confidence can be placed in such statistics can be difficult, but it is wise to be wary of any such reasoning. This is especially true when the unknown statistics are being used by someone who is likely to be biased. That said, to simply reject claims because they are based on unknown statistics would also be an error.

 

Example #1

“Several American Muslims are known to be terrorists or at least terrorist supporters. As such, I estimate that there are hundreds of actual and thousands of potential Muslim-American terrorists. Based on this, I am certain that we are in grave danger from this large number of enemies within our own borders.”

Example #2

“Experts estimate that there are about 11 million illegal immigrants in the United States. While some people are not worried about this, consider the fact that the experts estimate that illegals make up about 5% of the total work force. This explains that percentage of American unemployment since these illegals are certainly stealing 5% of America’s jobs. Probably even more, since these lazy illegals often work multiple jobs.”

Example #3

Sally: “I just read an article about cheating.”

Jane: “How to do it?”

Sally: “No! It was about the number of men who cheat.”

Sasha: “So, what did it say?”

Sally: “Well, the author estimated that 40% of men cheat.”

Kelly: “Hmm, there are five of us here.”

Janet: “You know what that means…”

Sally: “Yes, two of our boyfriends are cheating on us. I always thought Bill and Sam had that look…”

Janet: “Hey! Bill would never cheat on me! I bet it is your man. He is always given me the eye!”

Sally: ‘What! I’ll kill him!”

Janet: “Calm down. I was just kidding. I mean, how can they know that 40% of men cheat? I’m sure none of the boys are cheating on us. Well, except maybe Sally’s man.”

Sally: “Hey!”

Example #4

“We can be sure that most, if not all, rich people cheat on their taxes. After all, the IRS has data showing that some rich people have been caught doing so. Not paying their fair share is exactly what the selfish rich would do.”